Impact of intra-axonal kurtosis on fiber orientation density functions estimated with fiber ball imaging

link to paper

Impact of intra-axonal kurtosis on fiber orientation density functions estimated with fiber ball imaging

Jens H. Jensen

Abstract

Purpose

To determine the impact of an intra-axonal kurtosis on estimates of the fiber orientation density function (fODF) obtained with fiber ball imaging (FBI).

Theory and Methods

Standard FBI assumes Gaussian diffusion within individual axons and estimates the fODF by applying an inverse generalized Funk transform to diffusion MRI data for b-values of 4000 s/mm2 or higher. However, recent work based on numeric simulations shows that diffusion inside axons is non-Gaussian with an intra-axonal kurtosis of ∼ 0.4. Here, the theory underlying FBI is extended to incorporate an intra-axonal kurtosis. This is done to first order in the intra-axonal kurtosis without making assumptions about the details of the diffusion dynamics and to all orders for a specific model based on a gamma distribution of diffusivities. The first order approximation is used to assess the effect of an intra-axonal kurtosis on FBI estimates for the fODF and axonal water fraction. The gamma distribution model is used to test the validity of the approximation.

Results

The first order approximation indicates the estimated fODF is altered by a few percent for an intra-axonal kurtosis of 0.4 in comparison to predictions of standard FBI. If one neglects the intra-axonal kurtosis, the angular resolution of the point spread function for the fODF is changed by <1°, whereas the axonal water fraction is overestimated by ∼ 5%. The gamma distribution model shows that the first order approximation is accurate to within a few percent.

Conclusion

The intra-axonal kurtosis has a small impact on fODFs estimated with FBI.