In vivo 3D brain and extremity MRI at 50 mT using a permanent magnet Halbach array

Link to paper

In vivo 3D brain and extremity MRI at 50 mT using a permanent magnet Halbach array

Thomas O’Reilly, Wouter M. Teeuwisse, Danny de Gans, Kirsten Koolstra, Andrew G. Webb

Abstract

Purpose

To design a low‐cost, portable permanent magnet‐based MRI system capable of obtaining in vivo MR images within a reasonable scan time.

Methods

A discretized Halbach permanent magnet array with a clear bore diameter of 27 cm was designed for operation at 50 mT. Custom‐built gradient coils, RF coil, gradient amplifiers, and RF amplifier were integrated and tested on both phantoms and in vivo.

Results

Phantom results showed that the gradient nonlinearity in the y‐direction and z‐direction was less than 5% over a 15‐cm FOV and did not need correcting. For the x‐direction, it was significantly greater, but could be partially corrected in postprocessing. Three‐dimensional in vivo scans of the brain of a healthy volunteer using a turbo spin‐echo sequence were acquired at a spatial resolution of 4 × 4 × 4 mm in a time of about 2 minutes. The T1‐weighted and T2‐weighted scans showed a good degree of tissue contrast. In addition, in vivo scans of the knee of a healthy volunteer were acquired at a spatial resolution of about 3 × 2 × 2 mm within 12 minutes to show the applicability of the system to extremity imaging.

Conclusion

This work has shown that it is possible to construct a low‐field MRI unit with hardware components costing less than 10 000 Euros, which is able to acquire human images in vivo within a reasonable data‐acquisition time. The system has a high degree of portability with magnet weight of approximately 75 kg, gradient and RF amplifiers each 15 kg, gradient coils 10 kg, and spectrometer 5 kg.