Free-breathing 3D CEST MRI of human liver at 3.0 T

link to paper

Free-breathing 3D CEST MRI of human liver at 3.0 T

Pei Han, Karandeep Cheema, Tianle Cao, Hsu-Lei Lee, Fei Han, Nan Wang, Hui Han, Yibin Xie, Anthony G. Christodoulou, Debiao Li

Abstract

Purpose

To develop a novel 3D abdominal CEST MRI technique at 3 T using MR multitasking, which enables entire-liver coverage with free-breathing acquisition.

Methods

k-Space data were continuously acquired with repetitive steady-state CEST (ss-CEST) modules. The stack-of-stars acquisition pattern was used for k-space sampling. MR multitasking was used to reconstruct motion-resolved 3D CEST images of 53 frequency offsets with entire-liver coverage and 2.0 × 2.0 × 6.0 mm3 spatial resolution. The total scan time was 9 min. The sensitivity of amide proton transfer (APT)-CEST (magnetization transfer asymmetry [MTRasym] at 3.5 ppm) and glycogen CEST (glycoCEST) (mean MTRasym around 1.0 ppm) signals generated with the proposed method were tested with fasting experiments.

Results

Both APT-CEST and glycoCEST signals showed high sensitivity between post-fasting and post-meal acquisitions. APT-CEST and glycoCEST MTRasym signals from post-mean scans were significantly increased (APT-CEST: −0.019 ± 0.017 in post-fasting scans, 0.014 ± 0.021 in post-meal scans, p < 0.01; glycoCEST: 0.003 ± 0.009 in post-fasting scans, 0.027 ± 0.021 in post-meal scans, p < 0.01).

Conclusion

The proposed 3D abdominal steady-state CEST method using MR multitasking can generate CEST images of the entire liver during free breathing.