Optimizing background suppression for dual-module velocity-selective arterial spin labeling: Without using additional background-suppression pulses

link to paper

Optimizing background suppression for dual-module velocity-selective arterial spin labeling: Without using additional background-suppression pulses

Jia Guo

Abstract

Purpose

Background suppression (BS) is recommended in arterial spin labeling (ASL) for improved SNR but is difficult to optimize in existing velocity-selective ASL (VSASL) methods. Dual-module VSASL (dm-VSASL) enables delay-insensitive, robust, and SNR-efficient perfusion imaging, while allowing efficient BS, but its optimization has yet to be thoroughly investigated.

Methods

The inversion effects of the velocity-selective labeling pulses, such as velocity-selective inversion (VSI), can be used for BS, and were modeled for optimizing BS in dm-VSASL. In vivo experiments using dual-module VSI (dm-VSI) were performed to compare two BS strategies: a conventional one with additional BS pulses and a new one without any BS pulse. Their BS performance, temporal noise, and temporal SNR were examined and compared, with pulsed and pseudo-continuous ASL (PASL and PCASL) as the reference.

Results

The in vivo experiments validated the BS modeling. Strong positive linear correlations (r > 0.82, p < 0.0001) between the temporal noise and the tissue signal were found in PASL/PCASL and dm-VSI. Optimal BS can be achieved with and without additional BS pulses in dm-VSI; the latter improved the ASL signals by 8.5% in gray matter (p = 0.006) and 12.2% in white matter (p = 0.014) and tended to provide better temporal SNR. The dm-VSI measured significantly higher ASL signal (p < 0.016) and temporal SNR (p < 0.018) than PASL and PCASL. Complex reconstruction was found necessary with aggressive BS.

Conclusion

Guided by modeling, optimal BS can be achieved without any BS pulse in dm-VSASL, further improving the ASL signal and the SNR performance.