Self-gated cine phase-contrast balanced SSFP flow quantification at 0.55 T

link to paper

Self-gated cine phase-contrast balanced SSFP flow quantification at 0.55 T

Charles McGrath, Oliver Bieri, Sebastian Kozerke, Grzegorz Bauman

Abstract

Purpose

To implement cine phase-contrast balanced SSFP (PC-bSSFP) for low-field 0.55T cardiac MRI by exploiting the intrinsic flow sensitivity of the bSSFP slice-select gradient and the in-plane phase-cancelation properties of radial trajectories, enabling self-gated and referenceless PC-bSSFP flow quantification at 0.55 T.

Methods

A free-running, tiny golden-angle radial PC-bSSFP approach was implemented on 0.55T and 1.5T systems. Cardiac and respiratory self-gating was incorporated to enable electrocardiogram-free scanning during breath-hold and free-breathing. By exploiting the intrinsic in-plane phase-cancelation properties of radial acquisitions and background phase fitting, referenceless single-point PC-bSSFP was realized. In vivo data were acquired in the ascending aorta of healthy subjects at 0.55 T and 1.5 T during breath-hold and free-breathing. Flow data, SNR, and velocity-to-noise ratio were compared relative to data obtained with phase-contrast spoiled gradient-echo variants.

Results

Velocities acquired with PC-bSSFP compared well with data from phase-contrast spoiled gradient-echo (RMSEv = 5.8 cm/s). PC-bSSFP at 0.55 T resulted in high-quality cine magnitude images and phase maps with sufficient SNR and velocity-to-noise ratio. Breath-hold and free-breathing PC-bSSFP performed very similarly, with comparable flow quantification (RMSEv = 5.7 cm/s). Referenceless single-point PC-bSSFP results agreed well with two-point PC-bSSFP (−1.8 ± 5.2 cm/s) while reducing scan times 2-fold.

Conclusion

PC-bSSFP is feasible on low-field 0.55T systems, producing high-quality cine images while permitting simultaneous aortic flow measurements during breath-hold and free-breathing and without the need for electrocardiogram gating.