Three-dimensional sector-wise golden angle–improved k-space uniformity after electrocardiogram binning

link to paper

Three-dimensional sector-wise golden angle–improved k-space uniformity after electrocardiogram binning

Alexander Fyrdahl, Amanda Ullvin, Joao G. Ramos, Nicole Seiberlich, Martin Ugander, Andreas Sigfridsson

Abstract

Purpose

To develop and evaluate a 3D sector-wise golden-angle (3D-SWIG) profile ordering scheme for cardiovascular MR cine imaging that maintains high k-space uniformity after electrocardiogram (ECG) binning.

Method

Cardiovascular MR (CMR) was performed at 1.5 T. A balanced SSFP pulse sequence was implemented with a novel 3D-SWIG radial ordering, where k-space was divided into wedges, and each wedge was acquired in a separate heartbeat. The high uniformity of k-space coverage after physiological binning can be used to perform functional imaging using a very short acquisition. The 3D-SWIG was compared with two commonly used 3D radial trajectories for CMR (i.e., double golden angle and spiral phyllotaxis) in numerical simulations. Free-breathing 3D-SWIG and conventional breath-held 2D cine were compared in patients (n = 17) referred clinically for CMR. Quantitative comparison was performed based on left ventricular segmentation.

Results

Numerical simulations showed that 3D-SWIG both required smaller steps between successive readouts and achieved better k-space sampling uniformity after binning than either the double golden angle or spiral phyllotaxis trajectories. In vivo evaluation showed that measurements of left ventricular ejection fraction calculated from a 48 heart-beat free-breathing 3D-SWIG acquisition were highly reproducible and agreed with breath-held 2D-Cartesian cine (mean ± SD difference of −3.1 ± 3.5% points).

Conclusions

The 3D-SWIG acquisition offers a simple solution for highly improved k-space uniformity after physiological binning. The feasibility of the 3D-SWIG method is demonstrated in this study through whole-heart cine imaging during free breathing with an acquisition time of less than 1 min.