Velocity selective spin labeling using parallel transmission

link to paper

Velocity selective spin labeling using parallel transmission

Chia-Yin Wu, Jin Jin, Carl Dixon, Donald Maillet, Markus Barth, Martijn A. Cloos

Abstract

Purpose

Ultra-high field (UHF) provides improved SNR which greatly benefits SNR starved imaging techniques such as perfusion imaging. However, transmit field (B1+) inhomogeneities commonly observed at UHF hinders the excitation uniformity. Here we show how replacing standard excitation pulses with parallel transmit pulses can improve efficiency of velocity selective labeling.

Methods

The standard tip-down and tip-up excitation pulses found in a velocity selective preparation module were replaced with tailored non-selective kT-points pulse solutions. Bloch simulations and experimental validation on a custom-built flow phantom and in vivo was performed to evaluate different pulse configurations in circularly polarized mode (CP-mode) and parallel transmit (pTx) mode.

Results

Tailored pTx pulses significantly improved velocity selective labeling fidelity and signal uniformity. The transverse magnetization normalized RMS error was reduced from 0.489 to 0.047 when compared to standard rectangular pulses played in CP-mode. Simulations showed that manipulation of time symmetry in the tailored pTx pulses is vital in minimizing residual magnetization. In addition, in vivo experiments achieved a 44% lower RF power output and a shorter pulse duration when compared to using adiabatic pulses in CP-mode.

Conclusion

Using tailored pTx pulses for excitation within a velocity selective labeling preparation mitigated transmit field artifacts and improved SNR and contrast fidelity. The improvement in labeling efficiency highlights the potential of using pTx to improve robustness and accessibility of flow-based sequences such as velocity selective spin labeling at ultra-high field.