Weakly supervised perivascular spaces segmentation with salient guidance of Frangi filter

link to paper

Weakly supervised perivascular spaces segmentation with salient guidance of Frangi filter

Haoyu Lan, Kirsten M. Lynch, Rachel Custer, Nien-Chu Shih, Patrick Sherlock, Arthur W. Toga, Farshid Sepehrband, Jeiran Choupan

Abstract

Purpose

To develop a weakly supervised 3D perivascular spaces (PVS) segmentation model that combines the filter-based image processing algorithm and the convolutional neural network.

Methods

We present a weakly supervised learning method for PVS segmentation by combing a rule-based image processing approach Frangi filter with a canonical deep learning algorithm Unet using conditional random field theory. The weighted cross entropy loss function and the training patch selection were implemented for the optimization and to alleviate the class imbalance issue. The performance of the model was evaluated on the Human Connectome Project data.

Results

The proposed method increases the true positive rate compared to the rule-based method and reduces the false positive rate by 36% in the weakly supervised training experiment and 39.4% in the supervised training experiment compared to Unet, which results in superior overall performance. In addition, by training the model on manually quality controlled and annotated data which includes the subjects with the presence of white matter hyperintensities, the proposed method differentiates between PVS and white matter hyperintensities, which reduces the false positive rate by 78.5% compared to weakly supervised trained model.

Conclusions

Combing the filter-based image processing algorithm and the convolutional neural network algorithm could improve the model’s segmentation accuracy, while reducing the training dependence on the large scale annotated PVS mask data by the trained physician. Compared to the filter-based image processing algorithm, the data driven PVS segmentation model using quality-controlled data as the training target could differentiate the white matter hyperintensity from PVS resulting low false positive rate.